
Reducing Manual Abstraction in
Formal Verification of Out-of-Order Execution

Robert B. Jones1'2, Jens U. Skakkebaek1, and David L. Dill1

1 Computer Systems Laboratory, Stanford University, Stanford, CA 94305, USA
{jus ,dill}<Dcs. Stanford, edu

Strategic CAD Labs, Intel, JFT-104, 2111 NE 25th Ave., Hillsboro, OR 97124, USA
rjonesOichips.intel.com

Abstract. Several methods have recently been proposed for verifying
processors with out-of-order execution. These methods use intermediate
abstractions to decompose the verification process into smaller steps. Un-
fortunately, the process of manually creating intermediate abstractions
is very laborious. We present an approach that dramatically reduces the
need for an intermediate abstraction, so that only the scheduling logic
of the implementation is abstracted. After the abstraction, we apply an
enhanced incremental-flushing approach to verify the remaining circuitry
by comparing the processor description against itself in a slightly simpler
configuration. By induction, we demonstrate that any reachable config-
uration is equivalent to the simplest possible configuration. Finally, we
prove correctness on the simplest configuration. The approach is illus-
trated with a simple example of an out-of-order execution core.

1 Introduction

Several techniques for formally verifying out-of-order microprocessor designs us-
ing theorem proving have recently been suggested [4,10-12]. These techniques all
use some form of intermediate abstraction to bridge the gap in abstraction level
between the implementation and the specification, as defined by an instruction-
set architecture (ISA).

Creating such intermediate abstractions manually and then showing the cor-
respondence between the implementation and the intermediate abstraction is
laborious, even for high-level models. Omitting the intermediate abstraction and
manually developing the abstraction relation between the implementation and
the ISA is even harder. First, the extended instruction parallelism in out-of-order
architectures results in many complex interactions between executing instruc-
tions. This greater complexity makes it very difficult to devise an abstraction
function. Second, large (> 40 element) buffers are used to record and maintain
the program order of instructions.

Burch and Dill have devised an approach for pipelined microarchitectures
that automatically generates the abstraction function by flushing the implemen-
tation state [3]. The technique has been extended to dual-issue and super-scalar

DISTRIBUTION STATEMENT A 90090/. 11 Ofifi
Approved for Public Release LUULUTII U00

Distribution Unlimited

architectures [2,8,13]. However, these techniques do not work for out-of-order ar-
chitectures in practice because the number of cycles required to empty the buffer
completely is so large. The logical formulas are too complex to manipulate in
proofs and often too complex even to construct.

We have previously proposed incremental flushing, an extension to the Burch
and Dill flushing approach that inductively empties the buffer in smaller proof
steps [12]. We have applied it to automate part of the verification process of
out-of-order designs. The approach requires, however, that the out-of-order core
is abstracted into an in-order version. In this paper, we extend the incremental1

flushing approach to directly reason about the out-of-order core also. This avoids
the need for the in-order abstraction of our earlier approach. The implementation
abstraction that is still required is comparatively minimal, and the automated
incremental flushing approach can cover a much larger portion of the original de-
sign. This automates the generation of the abstraction function and significantly
reduces the manual effort required.

The extended technique only requires that the internal scheduling logic of
the processor be manually abstracted. An instruction is processed through a
number of internal steps, which each may take several cycles. The scheduling
logic affected determines which buffer entries, datapath resources, and busses
different instructions and steps are assigned to. We apply induction to show that
the implementation executing any number of instructions (up to the maximum
allowed) is functionally equivalent with the same implementation executing only
one instruction at a time. We finally complete the verification by checking the
implementation with one instruction against the ISA. This proof is much simpler,
since the bypass and buffering logic can be simplified away in the proofs. Note
that to make the induction work, it must be possible to stall each stage of the
out-of-order pipeline independently.

We use the same simple model of an out-of-order execution core to illus-
trate our approach that we used previously [12]. Although this example is not
representative of industrial-scale designs, it captures essential features of out-of-
order architectures: large queuing buffers, resource allocation within the buffers,
and data-path scheduling of execution resources. We have discharged the proof
obligations for the simple example using the Stanford Validity Checker (SVC).

2 Related Work

Sawada and Hunt's theorem-proving approach uses a table of history variables,
called a micro-architectural execution trace table (MAETT) [10,11]. The MAETT
is an intermediate abstraction that contains selected parts of the implementa-
tion as well as extra history variables and variables holding abstracted values.
It includes the ISA state and the ISA transition function. A predicate relating
the implementation and MAETT is found by manual inspection and proven by
induction to be an invariant on the execution of the implementation. In our
approach, we do not need an intermediate abstraction of the circuit, only the
scheduling logic is abstracted. We then use an incremental flushing technique

to automatically generate the abstraction function, reducing the manual work
required to relate the intermediate abstraction to the ISA.

Damm and Pnueli generalize an ISA specification to a non-deterministic ab-
straction [4]. They verify that the implementation satisfies the abstraction by
manually establishing and proving the appropriate invariants. They have applied
their technique to the Tomasulo algorithm [5], which has out-of-order instruction
completion. In contrast, our out-of-order model features in-order retirement and
the corresponding large buffers that are required. Damm and Pnueli's abstrac-
tion non-deterministically represents all possible instruction sequences which or>
serve dataflow dependencies. Our non-deterministic scheduler abstraction also
observes dataflow dependencies, but is additionally constrained by allowable re-
source allocations (e.g., buffer entries) in the implementation. Applying their
method to architectures with in-order retirement would require manual proof by
induction that the intermediate abstraction satisfies the ISA. We automate the
proof obligations with incremental flushing.

Hosabettu et al. use a technique for decomposing the abstraction function and
have applied it to the example of Sawada and Hunt with out-of-order retirement
[7]. Although this aids in finding an appropriate abstraction function, manual
intervention is needed in its construction.

Henzinger et al. use Tomasulo's algorithm to illustrate a method for manu-
ally decomposing the proof of correctness [6]. They manually provide abstract
modules for parts of the implementation. These modules correspond to imple-
mentation internal steps. Similar to our approach, the abstractions are invariants
on the implementation and are extended with auxiliary variables. Again, our new
approach automates much of the abstraction process.

McMillan model checks the Tomasulo algorithm by manually decomposing
the proof into smaller correctness proofs of the internal steps [9]. He also uses a
reduction technique based on symmetry to extend the proof to a large number
of execution units. Berezin et al. abstract the data path by introducing a data
structure called a reference table. Each entry in the reference table corresponds
to an uninterpreted term representing computation results of instructions [1].
They have applied their technique to Tomasulo's algorithm. However, the size of
the state space grows exponentially with the number of concurrent instructions.
Designs with in-order retirement contain a large reorder buffer and can con-
tain many instructions executing simultaneously. In contrast to both automated
model-checking approaches, our theorem-proving based method generalizes to
arbitrary buffer sizes.

3 Preliminaries
*

The desired behavior of a processor is defined by an instruction-set architecture
(ISA). The ISA represents the programmer-level view of a machine that executes
instructions sequentially. The ISA for our example is shown in Figure la. The ISA
state consists of a register file (H>F), while the next-state function is computed
with a generic execution unit (EU) that can execute any instruction. The ISA

Execution

tructions
Unit

<> „

Register File

Dispatch

Buffer

Execution
Unit

Execution
Unit

n
Retirement Buffer Register File

(a) (b)

Fig. 1. (a) The simple ISA model, (b) Instruction flow in our out-of-order execution
core IMPL.

also accepts a bubble input that leaves the state unchanged. Note that our ISA
model does not include a program counter or memory state—as these are also
omitted from our simplified out-of-order model.

Modern processors implement the ISA more aggressively. In out-of-order ar-
chitectures, instructions are fetched, decoded, and sent to the execution core in
program order. Internally, however, the core executes instructions out-of-order,
as allowed by data dependencies. This allows independent instructions to exe-
cute concurrently. Finally, instruction results are written back to architecturally-
visible state (the register file) in the order they were issued.

Consider our example out-of-order execution core (IMPL) shown in Fig-
ure lb. The architectural register file (RF) contains the current state of the
ISA-defined architectural registers. An instruction is processed in a number of
steps, which may each last a number of cycles: When an instruction is issued, new
entries are allocated in both the dispatch and retirement buffers, and the reg-
ister translation table (RTT) entry for the logical register corresponding to the
instruction destination is updated. The RTT is used to locate the instruction's
source data. Instructions are dispatched, possibly out-of-order, from the dispatch
buffer (DB) to individual execution units when their operands are ready and an
execution unit is available. When an instruction finishes execution, the result is
written back to the retirement buffer (RB). This data is also bypassed into the
DB for instructions awaiting that particular result. Finally, the RB logic must
ensure that instruction results are retired (committed to architectural state) in
the original program order. When an RB entry is retired, the RTT is informed
so that the logical register entry corresponding to the instruction's destination
can be updated if necessary. IMPL also accepts a special bubble flushing input
in place of an instruction. Intuitively, a bubble is similar to a NOP instruction but
does not affect any state or consume any resources after being issued.

Figure lb also shows the scheduling logic, which handles the allocation of
hardware resources and instruction flow. Scheduling must determine (1) which
slot in the DB to allocate at issue, (2) when to dispatch a ready instruction and

which EU to dispatch it to, (3) when an EU writes back a completed execution
result, and (4) when to retire a completed instruction. We call this collection of
resource allocation and dataflow decisions from the scheduling logic the choice
for a given cycle.

There are obviously many sound scheduling algorithms, and many allowable
scheduling choices exist for a given configuration. Which choices are allowable is
determined by the state of other instructions and available hardware resources.
For example, a sound but inefficient scheduling algorithm would only allow one
instruction to execute at a time—greatly simplifying the interaction between in-
structions. An optimal scheduling algorithm would execute instructions in what-
ever dataflow order makes the best use of execution resources. An implementable
scheduling algorithm falls somewhere in the middle and must balance execution
performance against implementation considerations.

We have made significant simplifying assumptions in our processor model:
instructions have only one source operand, and only one issue and one retire
can occur each cycle. We also omit a "front-end" with fetch, decode, and branch
prediction logic. Omitting these features allowed our efforts to focus on the
features which make the out-of-order verification problem difficult: the out-of-
order execution and the large effective depth of the pipeline. The verification
discussed in this paper uses a model with unbounded buffers.

4 The Approach

As in [12], the goal of our approach is to prove that the out-of-order implemen-
tation IMPL (as described by an HDL model) satisfies the ISA model. We define
d~i to be the implementation next-state function, which takes an initial state qt
and an input instruction i and returns a new state q'i, e.g., q'i = Si(qt,i). We
extend 5i in the obvious way to operate over input sequences w = to ■ ■ ■ in- We
define 6a similarly for ISA.

Let a be a size function that returns the number of currently executing in-
structions, i.e., those that have been issued but not retired. We require that
a{q°) = 0 for an initial implementation state q°. We define an instruction se-
quence w to be completed iff cr(6i(q°,w)) = 0, i.e., all instructions have been
retired after executing w. We use the projection function 7rRF(gj) to denote the
register file contents in state qi - which we define as the specification state. For
clarity in presentation, we define qn = <&2 to be irRF(qa) = TRFC^), and we
will sometimes use = when the projection 7rRF is redundant on one side of the
equality.

The overall correctness property for IMPL with respect to ISA is expressed
formally as:

Correctness For every completed instruction sequence w and initial state q°,

öi(q?,w) =Ss{irRP(q?),w).

That is, the architecturally visible state in IMPL and ISA is identical after
executing any instruction sequence that retires all outstanding instructions in
the implementation.

Our approach has three steps. First, we locate and abstract the IMPL schedul-
ing logic and prove the abstraction correct. We refer to the abstracted implemen-
tation as SAI (scheduler-abstracted implementation). In the second step, we use
incremental flushing to show that SAI with an abstracted scheduler calculates
the same results as if the instructions were executed one at a time. Note that
while the functional results should be identical, the timing of the results will of
course be different. This proves the correctness of the reordering control logic.
Finally, we show that SAI with an abstracted scheduler executing one instruction
at a time satisfies the ISA.

5 First Step: Abstracting the Scheduling Logic

We first identify the scheduling logic in the design and its interface to the rest
of the circuit. We wish to replace the original scheduling logic with the most
general scheduling algorithm that still provides legal choices to the rest of the
circuit. For example, the abstracted scheduling logic for our simple example will
(1) issue an instruction to any empty slot in the DB, (2) dispatch an instruction
to any available execution unit, (3) write back results from any execution unit
that has finished executing, and (4) retire any instruction with result data. In a
given state, the abstracted scheduling logic in SAI non-deterministically chooses
an allocation based on the current state of the SAI. The non-determinism is
implemented as an extra, unconstrained input.

Non-deterministic input

SAI

Instructions

Dispatch

Buffer

Abstracted Scheduler

H
Execution

Unit

RTT .»

11
Execution

Unit

r
Retirement Buffer

Results
Register File

Fig. 2. Instruction flow in SAI with the abstracted resource allocator.

The SAI with an abstracted scheduler is illustrated in Figure 2. The ab-
stract scheduler monitors the state of SAI and provides SAI with a scheduling
choice for every instruction input. Naturally, we want the abstracted scheduler
to make legal choices that only allocate free resources and advance only ready
instructions from one stage to the next. For example, only instructions that have
completed executing may be written back and retired. Identifying and abstract-
ing the scheduling logic in a realistic design requires a detailed understanding
of the circuit and may be error-prone. Fortunately, soundness of our approach
is not compromised by a bad selection of abstracted scheduler. The later proof
steps will fail if the abstracted scheduler in SAI is either incorrect or too general
to verify its behavior against ISA. Note, however, that we do not require the
scheduler to be centralized. The technique is equally applicable to a distributed
scheduler, where each part of the scheduler is appropriately abstracted.

We first show that the abstract scheduler is sufficiently general to capture
all the possible choice outputs that the implementation scheduler makes. We
then extend this result with a composition argument to show that SAI with
the abstracted scheduler is an appropriate abstraction of IMPL. Let Si be the
transition function of the implementation scheduler and let «Sa be the transition
function of the abstract scheduler. Sa takes an extra, non-deterministic input
ind- We must show that for each step that Si makes, there exists an Sa step such
that the choice outputs are identical:

Proof Obligation 1 (Scheduler Abstraction Correctness) For every reachable
state qi of IMPL and for every input i, there exists an input ind such that

out(Si(qi,i)) = out(Sa(qa,i,ind))-

One way of instantiating the abstract scheduler for this proof is to use an or-
acle which observes the original scheduler's behavior and knows how the non-
deterministic input affects the abstract scheduler.

Next, we must establish that SAI with the abstracted scheduler is an ap-
propriate abstraction of IMPL. We define Sa to be the SAI next-state function,
which takes an initial state qa and a pair consisting of an input instruction i
and scheduler choice ch and returns a new state q'a, e.g., qJ

a = Sa(qa, (i,ch)). We
extend the definition of Sa to sequences of instruction inputs w and choice se-
quence wch = ch0... ch„ such that q'a = Sa (qa, (w, Wch))1 ■ We say that a choice
sequence wch is Sa(qa, w;)-generated, if it is obtained by stimulating the abstract
scheduler to provide a sequence of choices corresponding to the instruction se-
quence w from the state qa. We define states ft of IMPL and qa of SAI to be
consistent when qt = qa, i.e., they have identical architecturally visible states.
Using Proof Obligation 1 and a composition argument, we can prove that:

IMPL-SAI Refinement For every instruction sequence w and every pair of
consistent initial states q°, q%, there exists a Si{q°,w)-generated choice sequence

1 The pair of sequences {w, wch) is easily derived from the corresponding sequence of
pairs (io, ch0),..., {in,ch„).

wch such that

We prove this by providing the following witness. By induction, we extend Proof
Obligation 1 to work on sequences of inputs and obtain a <S0(g°,io)-generated
sequence wCh that is equal to the sequence that is output from the implemen-
tation scheduler. Since SAI was obtained from IMPL by abstracting only the
resource allocation logic, the property follows trivially.

Note that this proof requires reachability invariants for IMPL and SAI. Find-
ing the reachability invariant for IMPL is necessary for any inductive method,
and is not unique to our approach. Finding the reachability invariant for SAI is
straightforward, because of the minimal changes from IMPL.

6 Second Step: Functional Equivalence of SAI and ISA

The second step in the verification is to prove that SAI with the abstract sched-
uler satisfies ISA. Formally:

SAI-ISA Equivalence For every completed instruction sequence w, initial SAI
state q°, and Sa(ql,w)-generated sequence of choices wCh-'

öatä,(™,Wch)) =6s{TrRF(q°),w).

Recall that the Burch-Dill abstraction function flushes an implementation
(by inserting bubbles) for the number of clock cycles necessary to completely
expose the internal state. In the case of a simple five-stage pipeline, only five
steps are required to complete the partially executed instructions. Following
this approach with our model would compare a potentially full RB with the
ISA model. The Burch-Dill flushing technique would unroll SAI to the depth of
the RB, resulting in a logical expression too large for the decision procedure to
check.

We extend the incremental-flushing approach presented in [12] to overcome
this problem. Rather than flushing the entire pipeline directly, a set of smaller,
inductive flushing steps is performed. Taken together, these proof obligations
imply the full, monolithic flushing operation. To illustrate the approach, consider
the graphical presentation of two different executions (state sequences) of SAI in
Figure 3. We define the execution of a system as the sequence of states that the
system passes through when executing a given input sequence. For instance, the
execution indicated in Figure 3a is a result of executing the instruction sequence:

il, ili bubble, bubble, 13, bubble, 14,15, bubble, bubble, ig, bubble, bubble.

with some choice sequence that appropriately allocates the resources so that all
instructions have retired in the final state state. Apart from self-loops indicat-
ing internal execution, edges are only traversed when instructions are issued or
retired.

J issue, no retire (a'= a+l) • •-• no issue, retire (o' = a-1) \^ issue, retire (a' - a) £} no issue, no retire (a'= o)

r5 r6 % 2» \<r »*0

(a)

3» 2

(b)

Fig. 3. (a) A Max-n execution e„. Labels in and rn denote the issue and retirement of
instruction number n. The label rn||m denotes simultaneous issue and retire, r : n is a
shorthand for n cycles where in each cycle, bubbles are issued and nothing is retired,
(b) An equivalent Max-1 execution ei. The squares indicate the distance between e„
and ei.

We use e(qa,(w,wch)) to denote the execution resulting from the appli-
cation of Sa to a state qa and the input sequence pair (w, ivch). We define
last{e{qa, (w,Wch))) as the last state of the execution. Note that, by definition
last(e(qa, {w,wCh))) = Sa(qa, {w,wch))- Each state in an execution is associated
with the number of active instructions—defined earlier as the size function a.
This is illustrated in Figure 3b. We call an execution which contains states with
most size n a Max-n execution (denoted e„). Accordingly, completely serialized
executions with at most one outstanding element are Max-1 executions (denoted
ei). An example of a Max-1 execution corresponding to the execution above could
be

i\, bubble4, %i, bubble4, i-$, bubble4,14, bubble4,15, bubble , ^, bubble .

where bubble4 = bubble,bubble,bubble,bubble. The execution is illustrated in
Figure 3b.

The first step of the SAI-ISA verification establishes that:

Incremental-Flushing Induction Step For every initial state 9°, and for
every Max-n execution en{qa,(w,wCh)), there exists (w1,wlh) derived from input
pairen(qa,(w,wch)) and a corresponding Max-1 execution ei^q^iw1,»)^)) such
that:

last(£„(<£, (w,wch))) = last(ei(g°, (w1,«;^»).

A Max-1 execution is derived from a Max-n execution by "stretching" the w
and wch sequences with the appropriate bubbles and stalling choices, respec-
tively, to stall the relevant parts of the out-of-order core. The intuition behind

this approach is that the final results of Max-n and Max-1 executions should
be identical—because bubbles and stalling choices should not affect functional
behavior. Clearly, if enough bubbles are inserted between subsequent instruc-
tions only one instruction will be in the pipeline at a time. In this situation it is
computationally manageable to compare SAI with ISA, since the bypass control
logic can be discarded in the proof. Section 6.1 details the proof obligations for
this step and describes how we proved this property on our example.

The second SAI-ISA verification step shows that all Max-1 executions pro-
duce the same result as the ISA model.

Incremental Flushing ISA Step For every initial state q£, and every Max-1
execution e\ corresponding to an instruction sequence w1 and every <Sj(<j£, w1)-
generated choice sequence u>lh:

laatfafä, {w\wlh))) = ö8(TrRF(q°a),w).

Proving this is much simpler than the original problem of directly proving SAI-
ISA equivalence, since only one instruction is in the machine at any given time
(because of the stretching bubbles and stalling choices). The proof is carried out
by induction on the length of instruction sequences, as described in Section 6.2.

6.1 Inductive Step

The incremental flushing proof step can be split up into three proof obligations.
First, we identify the maximum number of cycles required to symbolically simu-
late the implementation in order to ensure that at least one instruction is retired.
This is used to prove termination of the induction proof. Let <$" denote n cycles
of symbolic execution. Formally, we must prove that:

Proof Obligation 2 (Retirement Upper-Bound) There exists an upper bound
u, such that for every reachable state qa such that a{qa) > 1 and input sequence
pair (w,usch), at least one active instruction from qa will be retired between qa

and6%(qa,(w,wch)).

That is, we make a progress assumption that the implementation retires an
instruction within u cycles. We derive u by a worst-case analysis and determine
the longest path that an issued instruction could potentially follow before being
retired.

The upper bound u is assumed in the main induction. As we shall see, the
induction case is used to inductively move the last issued instruction to the end of
the execution sequence. In each application, independently executing instruction
steps are reordered. This reordering is performed by moving the instruction till
after the steps of the previously issued instructions.

In each application of the induction case, a subsequence is selected out of the
execution such that an instruction i is issued in the first cycle of the subsequence.
We denote the length of the subsequence by v, and will choose it to be > u. The
length of the subsequence is doubled in the application of the induction case:

the v choices are split up in a way that the first v steps allow SAI to perform
all steps that are not dependent on i. The steps related to i are then replayed in
the remaining cycles. As a consequence, the freshly-issued instruction i and its
steps are delayed by v cycles.

(a)

(b)

Cycle*

issue

dispatch
writeback

retire

Cycle #

issue

dispatch
writeback

retire

1 2 3 4 5

i4 — — — —
— d4 d3 — —

w2 — w4 w3 —
rl r2 — — r3

1 2 3 4 5 6

i4

7 8 9 10

— — d3 — — d4 — — —

w2 — — w3 — — — w4 — —

rl r2 — — r3 — — — — —

Fig. 4. (a) A choice sequence wch- (b) A stretched version wck' of the original choice
sequence wch-

To illustrate, consider the scheduling sequence wch shown in Figure 4a. Each
vertical box corresponds to a choice and the labels in, dn, wn, and m respec-
tively denote which dispatch buffer entry to store an issued instruction in, which
dispatch buffer entry to dispatch, which completed instruction to write back, and
whether or not to allow retirement of an instruction ready for retirement. Each
number identifies a particular instruction n. For instance, the first choice retires
instruction 1, writes back instruction 2, and issues instruction 4. A choice field
which keeps a particular resource allocation unchanged is denoted with "—".

A scheduling sequence wch is constructed by adding bubbles and stalling
choices to wch (Figure 4b). Observe that the ordering of the issue, dispatch,
writeback, and retirement choices for a given instruction are maintained. The
only difference is the delayed issue of instruction 4 and its subsequent dispatch
and writeback. On a per-instruction basis, the resources in wch and wch must be
the same and occur in the same order. This crucial requirement guarantees that
the resulting partially-executed state is the same in both cases and facilitates an
inductive proof over SAI state.

In the induction case, the length of the subsequence, v, must be chosen so
that it is at least u cycles and long enough to make sure that the instruction
can properly be moved passed the steps of other instructions. In our example, v
must be at least double the maximum execution time in an execution unit, i.e.,
which in total is less than 2u (from Proof Obligation 2 we know that the time
that any instruction spends in the execution unit is less than u). By doing this,

we are able to delay the instruction sufficiently far to avoid resource contention
when reordering.

restrict(<w,We>) replay(<w,Wc>)

o>0

q. •-
o>0

(a)

II

<W,Wc>

(b)

(J retire f\ rf

(c)

Fig. 5. (a) Illustration of Proof Obligation 3; the nodes are labelled with their sizes,
(b) Illustration of Proof Obligation 4. We must prove that self loops return to the same
state, (c) Illustration of Proof Obligation 5, the ISA induction step.

Given an input-sequence pair (w,wch), define restrict^((w,wch}) to be the
projection of all elements of (w,wch) not depending on i. Similarly, we define
replayi((w, wch)) to denote the projection of the elements of (w, wCh) that depend
on i. The proof obligation is then:

Proof Obligation 3 (Incremental Step) For every reachable state qa such that
v(qa) > I» and for every input-sequence pair (w, wch) such that the first element
of w is a non-bubble instruction and wch is Sj(qa,w)-generated:

Sl(qa,(w,wch)) = ölv(qa,(w',wch')).

where (w',wch) is the concatenation of restrict j((w,wch)) andTepla.y^({w,wch))-

In other words, we must show that the stretched sequence results in the same
state as the original sequence. The proof obligation is illustrated in Figure 5a.

As we shall see below, in the proof of Proof Obligation 3 it is sufficient to
consider the cases where the necessary resource is available so that the instruction
being moved can be scheduled appropriately and avoid resource contention. This
weakening assumption can be added to the proof obligation.

Note that Proof Obligation 3 requires also that internal registers with auxil-
iary values to agree on the resulting states. To illustrate, the replayed instructions
in our model may get their source operands from the RF rather than the RB.
The fields in the dispatch buffer indicating the physical sources of the operands
at issue may differ and should be set to some reset value after use.

Also observe that in each application of the induction step, more than one
instruction may retire within the v steps. Naturally, the worst-case upper bound
u (number of cycles before an instruction is guaranteed to retire) and therefore
v may be quite large in some designs due to execution units with long latencies.
This could result in symbolic expressions that are too large to check. In these
cases, the execution units and associated arbitration logic must be abstracted
separately.

The final proof obligation states that bubble inputs with stalling choices do
not change SAI state (illustrated in Figure 5b):

Proof Obligation 4 (Correctness of Self-Loops) For every reachable state qa,
instruction i, and stalling choice chst:

Taken together, these three proof obligations establish the Incremental Flush-
ing step of our verification, i.e. that every Max-n execution has a functionally
equivalent Max-1 execution. We next provide a brief sketch of the proof.

Proof Sketch:

We assume the three Proof Obligations shown above and must show that for
every Max-n execution en there exists a corresponding Max-1 execution e\ such
that

£n(C (w,Wch)) =' £i((?°, (to1,«;^».

We prove this by complete induction on the "distance" between the non-diagonal
Max-n execution e„ and the Max-1 execution E\, where distance is the number of
"squares" and "triangles" that separate the two executions. For example, eight
squares and two triangles separate the executions in Figures 3a and 3b.

First, if all states in en have a = 0 in states where instructions are issued, then
we have a Max-1 sequence and are trivially done—no more than one instruction
is ever executed at a time. This is the base case.

Otherwise, we reduce the distance by inductively moving the last instruction
issued in a state of a > 1 back until a — 0. We repeat this until all instructions
do not overlap in execution and thus obtain the base case.

In the induction, we repeatedly choose the last such instruction i and identify
the choice subsequence of length v starting with i. If necessary, we can make the
subsequence long enough, by extending e„ with extra, trailing stalling choices,
using Proof Obligation 4. We then apply Proof Obligation 3. If we have added
the previously mentioned weakening assumption that resources are available at
the end of v, we can satisfy this by locating the last place that the resource
was freed and delay the following rescheduling till after the v cycles, using Proof
Obligation 42.

We know that the number of internal steps between the instruction issue
and the end of the execution sequence monotically decreases in each application,
since we are moving the instruction passed at least one step of any kind in each
application. We also know that we are able to move all the internal steps of the
instruction, since the length v is greater than u. Furthermore, since the instruc-
tion sequence is completed, we know that we are also moving the instruction past

2 In implementations where the freeing and scheduling of the resource overlap in time,
we can prove a separate lemma that shows the correctness of the slight delay of the
rescheduling after the freeing.

instruction retires, each time monotonically decreasing the distance as defined
above and eventually reaching the base case. The induction is thus well-founded.
End Proof Sketch

6.2 ISA Step

The final verification step is to show that all Max-1 executions of SAI are func-
tionally equivalent with ISA. Because the instruction sequence w1 completes all
executions (i.e., leaves no outstanding instructions in the pipeline), we can divide
it up into issue-retire fragments in the Max-1 execution. We can assume that
each fragment has length u, since if one does not, we can apply Proof Obliga-
tion 4 to add or remove the necessary stalling cycles. The proof is an induction
on the number of such fragments, comparing the execution and retirement of an
arbitrary instruction from an arbitrary Max-1 initial state with the result that
is retired by ISA. This is illustrated in Figure 5c. Formally:

Proof Obligation 5 (SAI-ISA Induction) For every initial IA state q°, in-
struction i, and input sequence pair (w,wch) of length u containing only i as
its first instruction:

TO, <«>,ti>efc}) = *.(*„(£).0-

Because we have previously shown that a functionally equivalent Max-1 execu-
tion can be derived from an arbitrary Max-n execution, this step completes the
proof of SAI-ISA equivalence.

7 Mechanical Verification

We have mechanically checked our simple SAI abstraction and Proof Obligations
3-5 for our example using the Stanford Validity Checker (SVC). The proofs
finished in minutes. The three models (IMPL, SAI, and ISA) and the proof
obligations are written in a Lisp-like HDL. The proof formulas are constructed
by symbolically simulating the models in Lisp. SVC is invoked through a foreign-
function interface to decide the validity of the formulas.

The mechanical verification of Proof Obligation 3 has exposed several bugs
in the way the choice signals were introduced in the SAI. For instance, the
original formulation did not stall retirement properly. This was detected in the
verification with SVC when a stretched execution retired an instruction that the
original execution did not. This illustrates the ability of the incremental-flushing
step to detect possible bugs in the exposing of the scheduler interface.

We were able to locate the error using the counter example information that
SVC produced when the error was reached. The counter example is a conjunction
of predicates satisfied in the interpretation that falsifies the proof obligation. The
user can apply this information in the context of the original system model to
debug the error.

8 Discussion

This work addresses a recurring difficulty encountered in symbolic verification
of out-of-order processor designs: the difficulty of creating an appropriate im-
plementation abstraction. The extension of the incremental flushing technique
enables significantly more automation than the basic technique alone and re-
duces the need for manual abstraction. On the down side, the computational
complexity of the resulting proof obligations is higher, since more steps of sym-
bolic simulations are performed in each proof step. This was not an issue in the
verification of our very simple example. However, more research is needed to
address the application of the approach to more realistic designs. Also, work is
needed to establish if our techniques for avoiding resource contentions during
reordering are sufficient for more complex architectures.

It has been argued that localizing the (possibly distributed) scheduling logic
in a circuit will be difficult. Our assumption of practice is that optimal schedul-
ing algorithms are determined empirically by simulation and that location and
interfaces are clearly identifiable when plugging in different scheduler imple-
mentations. We expect that this knowledge can be exploited when locating the
scheduling logic for verification purposes.

Acknowledgments

We would like to thank the anonymous reviewers for their comments to the pa-
per. The first author is supported at Stanford by an NDSEG graduate fellowship.
The other authors are partially supported by DARPA under contract number
DABT63-96-C-0097-P00002. Insight about the difficulties associated with veri-
fying pipelined processors was developed while the third author was a visiting
professor at Intel's Strategic CAD Labs in the summer of 1995.

References

1. S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out-of-order processor verification. Appears in
this volume.

2. J. R. Burch. Techniques for verifying superscalar microprocessors. In 33rd
ACM/IEEE Design Automation Conference, pages 552-557, Las Vegas, Nevada,
USA, June 1996. ACM Press.

3. J. R. Burch and D. L. Dill. Automatic verification of microprocessor control. In
David L. Dill, editor, Computer Aided Verification. 6th International Conference,
volume 818 of LNCS, pages 68-80, Stanford, California, USA, June 1994. Springer-
Verlag. *

4. Werner Damm and Amir Pnueli. Verifying out-of-order executions. In Hon F. li
and David K. Probst, editors, Advances in Hardware Design and Verification: IFIP
WG10.5 Internation al Conference on Correct Hardware Design and Verification
Methods (CHARME), pages 23-j47, Montreal, Canada, October 1997. Chapman &
Hall.

5. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 1990.

6. T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee:
Methodology and case studies. Technical report, Electronics Research Lab, Univ.
of California, Berkeley, CA 94720, 1998.

7. R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Decomposing the proof of cor-
rectness of pipelined microprocessors. In A. J. Hu and M. Y. Vardi, editors, Com-
puter Aided Verification (GAV'98), volume 1427 of Lecture Notes in Computer
Science, pages 122-134, Vancouver, Canada, June-July 1998. Springer-Verlag.

8. R. B. Jones, D. L. Dill, and J. R. Burch. Efficient validity checking for processor
verification. In Proceedings: IEEE International Conference on Computer-Aided
Design (ICCAD), November 1995.

9. K. McMillan. Verification of an implementation of Tomasulo's algorithm by com-
positional model checking. In A. J. Hu and M. Y. Vardi, editors, Computer Aided
Verification (CAV'98), volume 1427 of Lecture Notes in Computer Science, pages
110-121, Vancouver, Canada, June-July 1998. Springer-Verlag.

10. J. Sawada and W. A. Hunt. Trace table based approach for pipelined microproces-
sor verification. In Orna Grumberg, editor, Computer-Aided Verification, CAV '97,
volume 1254 of Lecture Notes in Computer Science, pages 364-375, Haifa, Israel,
June 1997. Springer-Verlag.

11. J. Sawada and W. A. Hunt. Processor verification with precise exceptions and
speculative execution. In A. J. Hu and M. Y. Vardi, editors, Computer Aided
Verification (CAV'98), volume 1427 of Lecture Notes in Computer Science, pages
135-146, Vancouver, Canada, June-July 1998. Springer-Verlag.

12. J. U. Skakkebaek, R. B. Jones, and D. L. Dill. Formal verification of out-of-order
execution using incremental flushing. In A. J. Hu and M. Y. Vardi, editors, Com-
puter Aided Verification (CAV'98), volume 1427 of Lecture Notes in Computer
Science, pages 98-109, Vancouver, Canada, June-July 1998. Springer-Verlag.

13. P. J. Windley and J. R. Burch. Mechanically checking a lemma used in an auto-
matic verification tool. In Proceedings: International Conference on Formal Meth-
ods in Computer-Aided Design, pages 362-376, November 1996.

